The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 X 0 X 0 0 X^2+X X^2+X 0 0 X X 0 0 X^2+X X^2+X X^2 X^2 X X^2+X X^2 X^2 X^2+X X X^2 X^2 X X^2+X X^2 X^2 X^2+X X 0 X^2 X X^2+X 0 X^2 X X^2+X 0 X 0 X X^2+X X^2 X^2 X^2+X X^2 X^2+X X^2 0 X X X^2 X 0 X^2 0 0 X X 0 X^2+X X^2+X 0 X^2 X^2+X X^2+X X^2 X^2 X X X^2 X^2 X X 0 X^2 X X^2+X X^2 0 X^2+X X^2+X X^2 0 X^2+X X 0 0 X X 0 0 X X 0 X^2 X^2+X X X^2 X^2+X 0 X^2+X X^2 X^2 X^2+X X^2+X X^2+X X^2 X^2+X 0 0 X^2 X^2 0 0 0 X^2 X^2 X^2 0 X^2 X^2 0 X^2 0 0 X^2 0 X^2 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 0 0 0 X^2 X^2 0 0 generates a code of length 58 over Z2[X]/(X^3) who´s minimum homogenous weight is 56. Homogenous weight enumerator: w(x)=1x^0+39x^56+176x^58+39x^60+1x^116 The gray image is a linear code over GF(2) with n=232, k=8 and d=112. This code was found by Heurico 1.16 in 0.103 seconds.